Table 4. Predictive model performance assessment comparison

Model Detailed model Algorithms AUC CA F1 Precision Recall LogLoss
Augmented data evaluation criteria separated model Type of landscape kNN 0.972 0.919 0.917 0.922 0.919 0.176
SVM 0.999 0.971 0.971 0.972 0.971 0.055
Random Forest 0.969 0.920 0.918 0.925 0.920 0.249
Neural Network 0.999 0.986 0.986 0.986 0.986 0.033
Logistics Regression 0.998 0.977 0.977 0.977 0.977 0.060
Viewing of distance kNN 0.957 0.862 0.861 0.861 0.862 0.419
SVM 0.997 0.963 0.963 0.963 0.963 0.110
Random Forest 0.965 0.880 0.876 0.880 0.880 0.372
Neural Network 0.995 0.973 0.973 0.973 0.973 0.100
Logistics Regression 0.995 0.965 0.965 0.965 0.965 0.097
Preference of landscape kNN 0.787 0.698 0.695 0.698 0.698 0.609
SVM 0.953 0.875 0.875 0.875 0.875 0.297
Random Forest 0.836 0.763 0.763 0.764 0.763 0.521
Neural Network 0.990 0.952 0.952 0.952 0.952 0.126
Logistics Regression 0.970 0.915 0.915 0.915 0.915 0.226